Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments.

نویسندگان

  • Pawel Utko
  • Raffaello Ferone
  • Ilya V Krive
  • Robert I Shekhter
  • Mats Jonson
  • Marc Monthioux
  • Laure Noé
  • Jesper Nygård
چکیده

Fullerene peapods, which are carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. Their prospective applications include, for example, data storage devices, single-electron transistors and spin-qubit arrays for quantum computing. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications. In this paper, we investigate the effect of C(60) fullerenes on low-temperature electron transport through peapod quantum dots. Compared with empty nanotubes, we find an abnormal temperature dependence of Coulomb blockade oscillations, indicating the presence of a nanoelectromechanical coupling between electronic states of the nanotube and mechanical vibrations of fullerenes. This provides a method to detect the C(60) presence and to probe the interplay between electrical and mechanical excitations in peapods, which thus emerge as a new class of nanoelectromechanical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant electron heating and molecular phonon cooling in single C60 junctions.

We study heating and heat dissipation of a single C(60) molecule in the junction of a scanning tunneling microscope by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the scanning tunneling microscope tip contacts the fullerene the molecule can sustain ...

متن کامل

Thermal conductivity of carbon nanotube peapods

Thermal conductivity of a s10,10d carbon nanotube filled with C60 fullerenes (or a peapod) is computed using direct molecular-dynamics simulations with the Tersoff-Brenner potential for C-C bonding interactions and the van der Waals potential for nonbonding interactions. The temperature-dependent thermal conductivity of the peapod, while showing qualitatively similar behavior to that of an unfi...

متن کامل

Electronic and Transport Properties of Carbon Nano Peapods

We theoretically studied the electronic and electrical properties of metallic and semiconducting peapods with encapsulated C60 (C60@CNT) as a function of the carbon nanotube (CNT) diameter. For exothermic peapods (CNT diameter > 11.8 Å), only minor changes, ascribed to a small structural deformation of the nanotube walls, were observed. These include a small electron charge transfer (less than ...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

Effect of asymmetric quantum dot rings in electron transport through a quantum wire

The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010